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A geometric treatment of reduction of order of ordinary 
difference equations 

G B Byrnes 
Depylment of Mathematics, La Trobe University, Bundoom 3083 Wctoria. Australia 

Received 7 April 1995 

Abstract We generalize the theory of Lie symmeiries of ordinary difference equations to the 
non-autonomous case. A coordinate-invariant treatment in which solutions are sections of a 
fibre-bundle is employed. It is shown that Lie symmetries of difference equations must be 
project&Ie. which is not the case for differentid equations. In fact this result extends to pydal 
difference equations. We also show thal a time-like symmeuy can be used lo reduce a non- 
amtonomom difference equalion to lhe autonomous a. Examples are given of this process 
and of the reduclion of order of a non-autonomous syslem 

1. Introduction 

With the increasing use of numerical techniques in mathematics and physics, considerable 
effort has been directed in recent times to the study of discrete systems. In particular, 
difference equations are of interest both as approximations to differential equations and 
as models of fundamentally discrete systems in biology, economics and in physics. In 
either case, knowledge of the symmetries of difference equations is of great importance. 
Symmetries can be used to reduce the order of a given system [6] or to produce complex 
integrable systems by reducing simpler, larger systems L3.91, as is the case with differential 
equations. Where a difference equation is being used to generate numerical approximations 
to a given differential system, it is important to know if symmetries of the differential 
equations will be preserved accurately in the numerical results. 

The reverse process may be more important. If we know the symmetries of a system of 
ordinary differential equations (ODES), we can use them to reduce the order of the system 
before discretizing. On the other hand, if we have a discrete system with symmetries which 
we wish to replace with a continuous system, it is appropriate to reduce the order of the 
discrete system first. This paper explains how this can be done. 

Surprisingly, the application of Lie symmetry techniques to difference equations is 
comparatively recent, seeming to originate in the work of Maeda [5.6].  Considerable 
developments and generalizations have been made in this area, see for example [IO, 121. 

Returning to the work of Maeda [6], we find he restricts his attention to autonomous 
ordinary difference equations. The goal of this paper is to generalize his results to arbitrary 
ordinary difference equations (OAES). For ordinary differential equations the shift from 
autonomous to non-autonomous equations is straightforward, since the independent variable 
is real or complex and can therefore be treated as an extra dependent variable. However, in 
his treatment of OAES Maeda restricts the independent variable to take only discrete values, 
so if the non-autonomous generalization is not to be trivial this restriction must be removed. 
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4926 G B Bymes 

Also, the vector field defined by a set of ODES can be used to impose an equivalence 
relation on the generators of symmetries, such that every symmetry has an evolutionary 
representative. This is not the case with DAB, and this wiIl be seen to be an important 
difference. In this paper the independent variable will always be considered as a coordinate 
on either W or C, and the step (or mesh) size will be taken to be one. An nth-order system 
of OAE then has the form 
u j ( x + n )  = f j ( x . u ( x )  ,..., u ( x + n -  1)) 

Beyond this point we will consider only first-order equations explicitly. In many cases the 
treatment given will extend to higher-order equations, either by rewriting them as first-order 
equations of higher dimension or by the more sophisticated discrete jet-space approach used 
in [2]. 

The paper is organized as follows. In section 2 we describe the geometrical setting to be 
used and how difference equations appear from that perspective. Section 3 contains some 
necessary and sufficient conditions for the existence of a solution satisfying certain initial 
conditions. There are also definitions of linearizability and reduction of order. Symmetries 
of OAES are defined in section 4: in particular, we note differences that arise between 
autonomous and non-autonomous OAKS, as well as between OAEs and differential equations. 
For example, all symmetries of non-autonomous OAFS must be projective. Following this 
we discuss evolutionary and time-like symmetries in section 5 and show that any system 
of first-order OAES can be transformed into an autonomous system. An example of this is 
given. 

In section 6 we examine the relationship between symmetries and reduction of order. 
This includes the conditions under which symmetries pass to the reduced system to allow 
reduction of order by two or more We also show how to re-construct a solution of the 
original system from a solution of the reduced system and the extra complexity due to time 
dependence. Again examples are given. 

2. Difference equations 

It is fruitful to study difference equations in a coordinate-independent setting, where 
a transformation can be interpreted as choosing new coordinates to describe the same 
geometrical object. Thus we consider the product space E Y W x M, where M is a 
Cm (smooth), m-dimensional real manifold. To deal in a satisfactory way with simplifying 
coordinate systems on E ,  we will use the notion of a trivialization of E ,  given by 

v x  E R  j = 1 ,..., m. 

O : E + W x M  

o : P ++ (m. e m .  
Note that K is the projection to the first component. The set Mx := z-'(x), x E W will be 
called the fibre over x and is diffeomorphic via the restriction 8, := $ 1 ~ ~  to M. In other 
words, 8, defines time-dependent coordinates on M r .  We will use U to represent a point in 
M and x a point in R, so that O(p) = ( x ,  U) E W x M. Given a particular choice of local 
coordinates for M, the coordinates of U will typically be written as (U', . . . ,U"'). 

If M and N are manifolds and f : M + N is a smooth map, then the tangent space of 
M at U will be written T,M and the derivative map at U o f f  is f*(u)  : T,M + Tfcu)N. 

A section of E is a map p : W --t E which satisfies H o p = idk, 
The initiated will recognize that the constructions of this paper could easily be 

generalized to the case of a fibre bundle with typical fibre M, arbitrary one-dimensional 
base and projection r. 



'Reduction of order for difference equations 

Let 4 : E -+ E be a smooth map such that 

7r o 4(p)  = n ( p )  + 1 
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DeJinition 1. 

p E E 

and p : R -+ E a smooth section. Then p is a solution of the first-order OAE defined by 4 
iff 

p(x + I )  = 4 0 p ( x )  v x E R. 

The image of p is a submanifold of E which'can also be viewed as the graph of a 
function f defined by p ( x )  =: ( x .  f ( x ) ) .  The solution submanifold is then the graph 

( ( x ,  U) E R-x M : U = f ( x ) ]  

leading to the common notation 

u'(x + I )  = f ' ( x , u ( x ) )  j = I . .  . . , m. 

The danger of such notation is that when we define a vector field X on R x M, X ( x ,  U) 
depends on the point ( x . u )  but not on which of infinitely many solutions p satisfying 
p ( x )  = U is being considered. If U is used for both maps R + A4 and points in M ,  
confusion is difficult to avoid. 

3. Initial conditions and solutions 

There is a significant extra richness introduced by requiring the independent variable to be 
continuous. Restricting ourselves to the first-order case for clarity, the mapping 4 : E -+ E 
naturally induces a mapping on the space of sections [O, 1) -+ E. For the sake of 
definiteness, let us consider only smooth functions (although the restriction is not critical), 
denoted r([O, I), E ) .  By a slight abuse of notation, let 4 also stand for the induced map 

4 : r([o, I ) ,  E )  + r([1,2), E) .  

Hence we expect that the initial condition for a first-order OAE is an element of r([O, I), E).  
If we require that the corresponding solution be smooth, it is necessary to impose 
compatibility conditions. 

Proposition I .  
Then there is a smooth section p : R+ -+ E such that 

Suppose pi E r([O, 1). E )  and let 4 : E --f E define a first-order OAE. 

p(x + 1) = 4 0 p ( x )  

A x )  = 

v x E R+ 

v x E [O, 1) 

if and only if pi satisfies 

where the derivatives are  to be understood as left- or right-derivatives and limits as 
appropriate. 
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An important consequence of this result is that for any given first-order OAE, the set 
of solutions does not have bounded derivatives. By comparison, a first-order ODE can be 
interpreted as a vector field, so that derivatives of solutions are determined by the ODE rather 
than the initial conditions. The derivatives of solutions to ODES are therefore bounded for 
smooth, non-singular ODES on compact domains. This difference will have an important 
consequence when we discuss symmetries of OAES in the next section. 

More immediate is the problem of knowing what it means to 'solve' an OAE. We 
know that for a non-singular, first-order ODE given by a vector field V on E which projects 
to a unit vector on the first component, n.V = a / a x ,  the set of all (local) solutions is 
parametrized by any surface transverse to V, in particular by M. The flow of the vector 
field V carries forward the coordinates on M Y R- ' (xo )  so that in some neighbourhood of 
n- ' (x~)  there is a trivialization 8 such that 0,V = 0. Hence there are coordinates in which 
V = a/ax ,  corresponding to the trivial ODE U = 0. At this stage we can say that the ODE 
has been completely solved, since the integral curves are simply U = ug. While carrying 
out this procedure may not be possible in practice, we know that such a complete solution 
exists. 

The situation is changed significantly when working with difference equations. 
Conjugating @ with the chosen trivialization defines a parametrized automorphism of M 

:= e*+, 0 0, 0 8;l. 

(We will always assume that x and x + 1 are within the domain of the same trivialization). 

Dejinitiurr 2. We say that a first-order OAE given by 4 : E --f E is linearized on U C E 
if there is a trivialization 0 : E -+ R x M given in which 

6x(u) = idu 0 - ' ( x ,  U) E U. 

If such a trivialization exists it is called linearizing. 

Now suppose there exists a linearizing trivialization and that M is orientable. The 
Jacobian of a diffeomorphism M -+ M can then be defined and its sign is independent of 
coordinates. If g : W x M + M defines a change of trivialization by 

then the resulting transformation of 6 is 

e,H&oe,  X C W  

6z H & + I  0 6x og;'. 

Now since g, is smooth and non-singular for all x E W, its Jacobian J(gJ  is non-zero 
and continuous on W. Consequently J ( g , + l ) / J ( g , )  > 0 and the sign of J(6,) is invariant 
under changes of trivialization, so if Q can be linearized on U then 

J(6d > 0 v (x .e- ' (u))  E U. 
As an example recall the logistic map, a first-order, onedimensional autonomous OAE 

given in the standard coordinates by 

6 x ( u )  = au(1 -U) v x E w 
which is known to be chaotic if Q = 4. Thus J(6x)(u)  = ~ ( l  - Zu). which has a zero 
when U = 4. Thus the logistic equation cannot be linearized on any open neighbourhood 
having non-empty intersection with e- ' ($) .  In fact we can immediately prove a stronger 
result: we find that an OAE has a solution in this strong sense iff the OBE is a time-one 
integral of an ODE. 
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Proposition 2. Let M be a smooth, real manifold of dimension m and let 9 : E + E 
define a non-autonomous difference equation. Then 9 can be linearized on U C E if and 
only if there is a smooth, complete vector field V with ir,V # 0 on U such that O(p),  
p E U, is the unique point on the integral curve of V through p which projects by H to 
H(P)  4- 1. 

Proof: Suppose first that @ can be linearized, with linearizing trivialization 0 := IT x 8. 
In the coordinates defined on E by 0 (together with any atlas on M) it can be seen that 
V := has the appropriate property. 

To prove the converse, note that the Row of a complete non-singular vector field V such 
that n,V # 0 on a fibre-bundle H defines a trivialization 0 := IT x 8, with the property 
B,V = 0. Thus if p : W -+ E is the integral section of V through p E E. 8 o p ( x )  = B(p) 

0 

Theorem 3. Suppose that P : E + R has typical fibre M which is orientable. Let 
9 : E -+ E define a first-order OAE such that b has positive Jacobian. Then 9 can be 
linearized on a tubular neighbourhood of any solution. In the case where the typical fibre 
M of E is homotopic to R", 9 can be linearized on E. 

Pro05 Let p : R + E be a section of IT : E + R such that 9 o p ( x )  = p ( x  + I), x E R, 
so that p is a solution of the OAE. 

Now define a Riemannian metric gl on MI. From gl we can determine an exponential 
map 

for all x E W, from which it follows that &x = idM for all x E 1. 

exp : TP(l)M~ + UI 

where U1 E MI, p ( 1 )  E U,. Note that if M Y Rm then gl can be chosen to be the 
Euclidean metric and U1 = M I .  

The pull-back of gl by 9 induces a metric go := 9*gl on MO, with the property that 
geodesics of go map to geodesics of gl under 9. Now gl can be smoothly extended to 

1x1 < 114, with 9 used to define g,. Since g is Riemannian, g, for 114 < x < 314 
can be defined by extending from each side and using a smooth partition of unity on the 
overlap. 

We have now defined g on ~ - ' ( - f ,  $) in such a way that g, = @*g,+l, 1x1 < 114, so 
g can be extended with this property to the whole of E by iterating pull-backs by 9 and 
9 - I ,  Thus geodesics of g which are wholly contained within a fibre Mz map to geodesics 
on a fibre M,+I, x E R and the diagram 

0, 
T P ( X , M X  - ~p(.r+l)Mx+l 

.1 exp C exp 

U, - ux+1 
9 

with @(U,) E Ux+l. commutes. 

of the exponential map we obtain a new trivialization 
Let 0 = A x 8 : E + lR x M be a trivialization of E. Composing 8 with the inverse 

8' := B o exp-' . 
Let 6' and 6 be the automorphisms of M corresponding to 8' and 8, respectively. Then 

= idGq(,)M, i.e. = id on an open neighbourhood (?(U,) of B o p ( x )  if and only if 
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iff 4, is the identity at a single point. Therefore 8' will be a linearizing transformation 
for 9 on a tubular neighbourhood of the image of p iff we can choose 8, to be linearizing 
along p. This in turn can be done iff there is a change of trivialization g : W x M + M 
with derivative at 8 o p ( x )  G, such that 

This last equation is just a non-autonomous OAE on the Lie group GL(m, W), which always 
has a smooth solution provided that 6;; maps the identity connected component to itself. 

0 This is the case provided that the Jacobian of 6;;. hence of 6x*, is positive. 

The following corollary follows immediately from the theorem. 

Corollary 4. If 9 : E -+ E defines a first-order OAE, then the OAE defined by the iterate 
Qp2 can always be linearized and is therefore the integral of a differential equation in the 
sense of proposition 2. 

3.1. Reduction of order 

If an OAE does not have a complete linearization, or if it cannot be found, it may still be 
possible to reduce it to an OAE of lower dimension. 

Let XF : F + P be a (trivial) fibre bundle with connected typical fibre N, dim N = 
n < m, such that there is a projection p : E + F which makes the diagram 

f l  E + F  

id P - W  
4.X & KF 

commute. 

Definition 3. If there is a map 6 : F + F such that 

9 E + E  

4.P .1P 
9 F - + F  

commutes, then we say that there is a reduction of 0 : E + E to 
defines a first-order OAE of dimension n.  

: F + F ,  which 

The above situation can be described in terms of local coordinates which are adapted 
to the projection p. An atlas for E is said to be adapted to p if in each local chart the 
coordinates are of the form ( x ,  U ] .  . .. , U " ,  U"+', ..., w"). where the first coordinate is 
constant on each fibre H - ' ( x )  and the next n ,  U ' ,  . . . ,U" are constant on each fibre of p, 
P- l (q)>  4 E F .  

Pmposition 5. 
to p such that 

There is a reduction of 9 to q5 iff and only if there are coordinates adapted 

a 
a d  - d = O  j = 1 ,  ..., n k = n + l ,  ..., m. 
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Proo$ We prove the forward implication first. Let X be a vector field satisfying 

R*X = p*x = 0 

so that it is tangent to the fibres of j~ and of z. 
span( &, . . . , &}. Now if ut is the flow of X ,  
I in some neighbourhood of zero. Assuming Q to be reducible, 

Then at each point of E ,  X E 
o U&) = p ( p )  for all p E E and 

PO Q OO,(P)  = 6 0 I* out@) = d O P ( P )  = LL 0 @(PI.  

Differentiating w.r.t. f at zero we obtain 

p*Q*X = 0. 

However, the kernel of 
Conversely, we have p.Q.X = 0 for all such X, which can be true only if the value 

of p o Q is independent of U', . . . , U". Thus we can define o 1 := p o 0, satisfying 
definition 3. U 

It should be noted that if dim N = 0, so that F = R, then Q is linearized in the adapted 

is spanned by { &, . . . , &}. which proves the result. 

coordinates. 

4. Symmetries 

Dejinition 4. Let X be a smooth vector field on E ,  generating a flow Jr, = exp(sX). We 
say that X generates a symmetry (or simply is a symmetry) of a first-order OAE defined by 
Q : E -+ E if the image under @r of each solution p : R + E remains a solution for r in 
some neighbourhood of zero: that is there exists E > 0 such that for all r E [ - E ,  E ] ,  

*r o Q = Q o @ r .  

If we differentiate the above equation w.r.t. r at r = 0, we obtain a necessary condition 

(1) 

for x: 
x 0 Q = Q * X .  

In the case of autonomous OAEs we can use the exponential map to construct ?,br from X, 
to prove that the converse also holds and (1) can be taken as the definition of a symmetry 
vector field. However, there is an additional complication with non-autonomous OAES: an 
arbitrary flow @r may carry solutions to curves which are not the solution of any difference 
equation. 

Lemma 6. 
on E with coordinate expression 

Let rP : E + E define an first-order OAE and let X be a smooth vector field 

a a 
@*X(X, U) = A(x, U)- + B'(x ,  U)- 

ax auJ 

and flow 

exp(rX) =: qZ : E - E .  

Then if for some j and some (x, U) E B x M we have aA(x,  u ) / au j  # 0, there exists for 
all r > 0 a solution p : R 3 E of Q with image G, such that &Gp is not a section of 
R : E - + R .  
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Proof: We may as well assume that aA(O.O)/auj > 0 and hence that aA/aul 0 on 
some neighbourhood of (0,O). In order for a curve y in E to be the image of a seaion 
of n : E + R. there must be a parametrization y : R + E such that composition with 
the projection gives the identity map: P o y = idR, which in tum is possible only if the 
derivative of the composition is strictIy positive: x,(p) > 0. 

Now consider a curve y in E given in coordinates by 

O o y : r H  ( f , O  ,..., O,KZ,O ,..., 0) t € ( - - € , € )  

where the j + Ith entry is non-zero, K is constant and E > 0. Since P o y = idw it is the 
image of a section. Provided E < 4, y can be smoothly extended to an allowable initial 
condition for 0 and hence to a solution. 

The action of @< on y gives 

o o $, o y : t H (t + T A  o y( t ) ,  r ~ '  o y ( t ) ,  . _. , K t  -I T B ~  o y ( r ) ,  . . . , , . . , 
rB" o ~ ( 2 ) )  + O(T*) .  

Taking the first component and differentiating we obtain 

so if we fix r > 0 and choose 

K < -(;+E)/% 
then n*&*?(O) e 0. Thus +rGh cannot be the image of any section of IT : W -+ E. 

Theorem 7. 
preserving: there is a smooth function A : R + R such that 

0 

If a vector field X on E generates a symmetry of an OAE, then it is fibre 

a 
a x  

IT,X = A - .  

This implies that X has local coordinate expression 

a a 
ax aui 

O,X(X,U) = A ( x ) -  + B j ( x , u ) - .  

Moreover A is unit-periodic, A(x + 1) = A(x)  for all x E R. 

Proof: 
Since X generates a symmetry, 

From definition 4 and the lemma, n , X ( p )  depends only on n ( p ) ,  so A exists. 

a a 
ax ax 

( A  0 1 1 ) -  = P,O,X = P.(X o Q) = A O I T  o@- 

However, as x o @ ( p )  = x ( p )  + I ,  this reduces to A(x + 1 )  = A(x)  for all x E W. 0 

Note that this result extends to partial difference equations by simply restricting the 

This extra condition of projectability is sufficient when combined with the derivative 
base space to a one-dimensional submanifold. 

condition (1) to ensure that a vector field generates a symmetry. 
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Theorem 8. Let 0 : E --f E define an OhE. The vector field X on E generates a symmetry 
of @ if and only if X satisfies the conditions 

(i) @,X = X o @; 
(ii) &X = A & ,  A E Cm(R). 

P m J  The necessity has already been shown. Suppose p is a section of IT : E + R which 
solves the OBE, that is (@ o p ) ( ~ )  = p(x + 1). Since p is a section, its image intersects 
each fibre Mx in a single point. Now the second condition of the theorem implies that the 
flow of X maps fibres to fibres, so the image of eZ o p  also intersects each fibre in a single 
point and er o p is therefore a section of IT. 

o @ = @ o er for r in some neighbourhood of zero, 
0 

The first condition implies that 
so solution sections map to solution sections. 

4.1. Algebraic properties of symmetries 

It is known that the symmetry vector fields of an ODE on E form a Lie sub-algebra of the 
algebra of smooth vector fields on E, since the condition for X to be a symmetry of the ODE 
determined by the vector field V is just [X, VI = AV. Below we investigate the algebraic 
properties of the symmetries of an OBE. 

Proposition 9. Let f, g be unit-periodic, real valued functions on R. Then if X, Y are 
symmetry vector fields of a, so is (n'f)X + (x*g)Y.  Here the pull-back n* f is defined 
as usuat by 

frooJ First. if X is fibre preserving then so is (n*f)X for any f : R + B. If h is any 
function on E, then @,(hX) = h%X, so we need to show only that (n*f) o @ = IT* f ,  

0 

Hence the symmetry vector fields of @ form a module over the ring of unit-periodic 

However, for all p E E ,  x o @ ( p )  = rr(p) + I and f is unit periodic. 

functions. It is also a Lie algebra over W with the usual mmmutator bracket: 

Proposition 10. 
is [ X ,  Y ] .  Consequently the symmetry vector fields of @ form an R-Lie algebra. 

P m j  
Maeda [5],  but in any case the proof is trivial: 

If X and Y are symmetry vector fields of an OhE defined by @, then so 

In the case of autonomous OAEs and autonomous symmetries this was shown by 

@*[X, Y l  = [@*X, @*Yl = [X 0 @, Y 0 @I = [X. Y ]  0 @. 

Also &[X, Y] = [GX, n*Y] is a well-defined vector field on W, so [X, Y ]  is fibre 
preserving. Closure under addition and scalar multiplication is a special case of 
proposition 9. 0 

However, the periodic functions are not constants with respect to the the Lie derivation, 
so without further restriction it cannot be treated as a Lie algebra over the ring. As an 
R-algebra, a consequence of proposition 9 is that it cannot he be finite dimensional. 
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5. Evolutionary and t imclike symmetries 

In the case of OD=, fibre preserving symmetries (sometimes called projectable [7]) are 
not the only type. However, for first-order ODES one can define trivial symmetries, which 
leave each solution curve invariant up to re-parametrization. Every symmetry vector field 
is equivalent, modulo a trivial symmetry, to a symmetry vector field with K , X  = 0 (and 
are therefore fibre-preserving). Such symmetries are called evolutionary and the definition 
is also important for non-autonomous OAES. 

Definition 5. 
X is an evolutionary symmetry vector field if R,X = 0, or in coordinates 

Let X generate a symmetry of the OAE defined by Q : E + E .  We say that 

If X is evolutionary and f E Cm(R$) then X(n’f) = 0. Let the ring of smooth unit 
periodic functions on W be denoted by P .  

Proposition J I .  
algebra with the commutator as Lie product. 

Proof. Since the fibres of JI are integrable it is certainly an W-Lie algebra. We have seen 
in proposition 9 that it is closed under multiplication by elements of K ’ P ,  and if X and Y 
are evolutionary and f,g E P then 

The set of evolutionary symmetry vector fields of an Oak? is a P-Lie 

[ ( K * f ) X ,  (a’g)Yl= J I ’ ( f g ) I X ,  Y l ,  

0 

In fact, one finds that theorems on symmetries of ODES translate readily to theorems on 
OAES provided that attention is restricted to evolutionary symmetries. 

Proposition 12. Let Q : E -+ E define a first-order OAE which can be linearized on 
some open, simply connected domain U C E .  Then there exist m = dim M point-wise 
independent, commuting, evolutionary symmetry vector fields for Q on U .  

Prooj? From proposition 2 we know there exists a vector field V on U with flow W, such 
that Wj = 0. Since U is a domain we can choose coordinates in which V is represented by 

and evolutionary vector fields X, = a / a d ,  j = I ,  . . . I m using local fibre coordinates 
u3. Being coordinate vector fields these will automatically satisfy the conditions 

il 

[ V , X j ] = O  j = 1 ,  . . . ,  m. 

Now 

Since Qo = id we have 

w ’ x . o Q - ’  - x .  - 0  r E to, 11 r. I I I -  
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and setting r = 1 and multiplying by 4* we obtain 

X j  o 9 = % X j  j = 1, ..., m 

as required. 

Proposition 13. Suppose that @ : E + E can be reduced to @ : F + F on an open, 
simply connected domain U, as in definition 3. Then there exist on U m - n point-wise 
independent, commuting, evolutionary symmetry vector fields for @. 

Proof: Consider the local coordinates ( x .  U ,  w ) of proposition 5. Proposition 12 can be 
0 

For a first-order ODE, trivial symmetries can be characterized as those which leave each 
solution invariant up to re-parametrization, whereas non-trivial symmetries permute distinct 
solutions. In fact the generator of a trivial solution is a scalar multiple of the vector field 
which defines the ODE. Since this vector field has a nowhere zero projection, it is elementary 
linear algebra to show that any other symmeuy generator can be made evolutionary by 
adding a suitable multiple of the trivial symmetry. Unfortunately, this method cannot be 
applied to OAES. since they cannot be defined by a single vector field. 

Consider an arbitrary first-order OAE defined by @ and a solution p1 : 1 + E .  A 
vector field X generating a flow which leaves p~ invariant up to reparametrization must be 
tangent to the graph of p,  . However, there always exists a second solution fi  : 1 + M. 
p1 # p2 such that 

applied to the restriction of @ to the w coordinates on each chart. 

PI@) = P Z ( ~ )  # P;W) A. z. 
Clearly if X is tangent to both p j ,  then 

X ( k ,  pi ( k ) )  = 0 k E Z. 

In fact p2 could have been chosen to intersect PI an arbitrary, finite number of times in the 
interval 10, 1). extending with the unit period over R. So there is no non-singular symmetry 
vector field which leaves the graphs of both pi and p2 invariant. Consequently, it is not 
possible to use the invariance of individual solutions as a definition of trivial symmetries for 
OAES. However, the following result demonstrates that timelike symmerries can substitute 
for trivial symmetries in some ways. 

Definition 6. 

The time-like vector fields are clearly the point-wise complement of the evolutionary ones. 

Lemma I C  The OAE defined by 0 is autonomous in a trivialization 0 = R 8 6' iff for 
any vector field Z on E ,  

Z E ker.9, 

A vector field X on E is said to be time-like if for all p E E a.X, # 0. 

0.2 E kerf?, 

Proof: In coordinates, @ is autonomous iff 
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which is equivalent to Q,T = T for T the vector field satisfying 0,T = 0 and a.T = 3. ax ' 
Suppose Q is autonomous. Since 0, has a one-dimensional kernel, 

2 E ker6. =+ Z = f T  f E Ca(E)  

and therefore Q&! = f T  E ker6,. 
Conversely, again using dim ker6, = 1, 

6.2 = 0 * 0*Q,*z = 0 

implies that if 0.2 = 0 then 

o*z = fZ f E C". 

Differentiating the condition of definition 1 we have for any vector field Y on E that 
n*Q*Y = z*Y, so 

j7.Q.Z = a*z = n*( fZ)  = fZ.(Z) 

and f = 1. Now 6, : M, --t M is a diffeomorphism for each x E W, so the restriction of 
0. to a fibre M, has maximal rank. Consequently if Z E ker6,. n,(Z) is nowhere zero. 
Setting T = Z/ (x .Z ,  &), with (., .) the standard inner product on R, T satisfies O.T = 0, 
a.T = 6 and Q,T = T .  Hence Q is autonomous wiih respect to the trivialization 0. 0 

Theorem 15. There exists a trivialization of E in which a given OhE defined by Q : E + E 
becomes autonomous on U C E iff there is a complete vecmr field T on U with the 
properties 

(i) n,T # 0; 
(ii) QP.T = T o  Q. 

That is iff T is a time-like symmetry vector field of Q. 

Proof: Suppose first that Q is autonomous in some trivialization 0 : E + R x M. Set T 
to be the unique vector field such that 6.T = 0 and a.T = &. From the lemma we have 
that QP,T = T and T o  Q = T ,  so T is a symmetry vector field. 

Now suppose T is given. From theorem 7, we know there is a unit-periodic function 
A on R such that a.T = A;, with A # 0 on U by hypothesis. Thus 1/A is a well 
defined unit-periodic function on (I, so ? := i T  is a symmetry vector field of Q (by 
proposition 9) with n,? = 6. We can then use ? to define a trivialization 0 of U 
such that e,? = 0. However, 6, has a one-dimensional kernel, so if Z E ker0. then 
2 = ff = g T ,  f, g E Cm(E). Since T is assumed to be a symmetry vector field, 

0 2  = gQ,T = g(T o Q) E ker Q,*, 

Thus 6.Z = 0 implies 6.Qp.Z = 0. U 

Theorem 16. For any first-order OAE defined by Q : E --t E there is a symmetry vector 
field T for Q, such that n.T # 0 on E. Conseqeuently there is a trivialization for Q in 
which it becomes autonomous. 
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Proof: Since the general linear group has only two connected components it is always 
possible for some E > 0 (by constructing a smooth homotopy with x as parameter), to 
choose a trivialization 0 so that 

6, = +ridM x E (4, E ) .  

If we now set T := e-'(&) on the set ?r-'[O, 11, then extend the definition in each direction 
I3 

Let A : R + R be any unit periodic function. Then there is a symmetry 

using @ and a-', T satisfies the conditions of theorem 15. 

Corollary 17. 
vector field X for @ such that x,X = A$. 

Proof: We have from the theorem that there is always a symmetry T such that rr,T = &. 
0 

has k independent evolutionary 
symmetry vector fields, there is necessarily an additional independent symmetry generating 
a trivialization in which @ becomes autonomous. Thus we have the following theorems 
from corollary 17 and propositions 12 and 13. 

Theorem 18. Let 4 : E + E define a first-order OAE which can be linearized on some 
open neighbourhood U c E. Then there exist m + 1 point-wise independent symmetry 
vector fields for 4 on U. 

Theorem 19. 
Then there exist locally m - n + 1 point-wise independent symmetry vector fields for 0. 

From proposition 9, (?r*A)T is also a symmetry. 

Following from this result, if an OAE defined by 

Suppose that Q : E + E can be reduced to r$ : F + F, as in definition 3. 

5.1. Example 

Consider the system of two first-order OAE defined in the octant x, U ,  U > 0 by 
U,+I = up/(u*+*) 

x + l  
UZ+l = -(Un +x). 

X 

Here uf U @ ) ,  etc. The corresponding map @ is 

with corresponding derivative map 

1 0 0 
- U 

"/("+i) __ U-x / ("+x)  
u + x  

1 
0 l + ;  

U 
1 - -  

x2 

If we look for a symmetry vector of the form VO = & f f(x, U, U)$, then the 
requirement Vo o Q = Q*Vo is equivalent to the two conditions 

xf(x, U ,  U) - U = 0 

(1 + l/x)f(x, U ,  U) + I - u / x *  = f ( x  + 1, UU'("+X),  (1 + l/x)(u +x)). 
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The first gives f ( x ,  U ,  U) = v / x  and the second is consistant. Thus Vo = 
symmetry vector field with n.Vo = 6 .  
Vo, then Q will become autonomous. 

g. Hence we take as new coordinates Q := U, 2 := u / x  and .i := x. We then have V, = 
as expected and the OAE takes the autonomous form 

+ :$ is a 

According to theorem 16, if we now choose the trivialization of E = R3 determined by 

Note that VOU = 0, so U is a first integral. Also Vog(u/x)  = 0 for any smooth function 
a 

"%/($+I) 
& + I  =U, 

G,+] =U" + 1. 

6. Reduction of order 

Having established in the previous section that symmetries are a consequence of linearization 
or reduction of an OAE, we obviously wish to show that the converse also holds. This will 
be done by induction: first we must show that a single symmetry can be used to reduce the 
dimension of the system by one. 

Lemma 20. Let 0 : E + E define a first-order OAE with a nowhere zero evolutionary 
symmetry vector field X. Then for some open submanifold U C E there is a reduction of 
@ : U + U to @ : F + F. where F is a sub-bundle of E with co-dimension one. 

Proof: The submanifold U can be chosen so that X generates a regular action $ on U 
(see, e.g., [7]). Now F can be defined as the quotient manifold U/$, with p mapping each 
point of U to the orbit of $ on which it lies. Since X is evolutionary the fibre structure of 
U passes to the quotient and the orbits of $ are one dimensional, so F is a sub-bundle of 
E with co-dimension one. Note that F need not be HausdorR Palais [8] has shown that 
this does not significantly restrict our use of F .  Alternately, U may be chosen so that F is 
Hausdorff. 0 

To prove the induction step we must show that the remaining symmetries (of appropriate 
type) pass to the quotient. 

Lemma 21. Let Q : E + E have a reduction to @ : F + F given by p : E -+ F 
and suppose that the codimension of F is k. Let XI, . . . , XX span ker p*. Then if Y is a 
symmetry vector field of 4 on E which satisfies 

j = I .  .... k [Y, Xjl E kerp. 

there is a symmetry vector field f of @ on F .  

ProoJ The definition of the Lie bracket and the fact that Xj E kerp., implies that 
p*Y is well defined on the quotient, so we set p := pJ. Thus we need to prove that 
( p , Y )  04 = 4.p.Y. However, from the commutative diagram preceding definition 3 we 
have that @,p, = Moreover since Y is a symmetry of Q, @*Y = Yo@. Substituting 
on the right-hand side we now need to show only that (p.Y)o@ = p*(Yo@), which follows 

0 from the same commutative diagram. 

We can now prove the theorem: 
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Suppose an OAE 0 : E + E has s independent, evolutionary symmetry Theorem 22. 
vector fields X I ,  . . . , X, which satisfy 

Then there is a reduction of 0 to q4 : F + F on some open submanifold U C E. with F 
having co-dimension s in E. 

ProoJ The proof is by induction. Suppose that we are able to construct a reduction 
p k  : E + Fk, 0 < k < s - 1, with reduced OAE @k : Fk + F k ,  Here we identify Fo E, 
CO 0 and pg = idE. Suppose further that the vector field pk*Xk+1 is well defined and 
generates a symmetry of r#Ik on Fk, while X,, . . . , xk span ker pk*. 

Now use the process of lemma 20 to define a reduction U : Fk + Fx+I, where F k + I  is 
the space of orbits of &&+I and cr is the canonical projection (with a restriction to an 
open submanifold of F k  if necessary to ensure regular orbits and a Hausdorff topology for 

Since pk*&+[ spans keru*, defining p k + l  := U o pa we have that XI. .  . . , & + I  
span keryk,,,. Let be the reduction of 0 by p k + I .  

Since 

[ X X + ~ ,  X j ]  E kerpk. j = 1 . .  . . , k + 1 

we know from lemma 21 that p k + l x x k + 2  is a well-defined symmetry vector field of 
&+I : F ~ + I  + F k + I  and so the induction is complete. The k = 0 case follows immediately 
from lemma 20. L3 

Of course, reduction of order is only half the story. It allows the construction of a 
complicated difference equation starting from a simple one, so that the solutions of the simple 
system pass to those of the complicated system by the quotienting procedure, however, the 
technique was originated for ODES in order to solve the larger equation from the solution 
of the reduced system. To do this we must have a method of reconstructing solutions, or 
ideally a linearization, of the larger system from solutions or linearization of the smaller. 

Theorem 23. Let 0 : E -+ E define an OAE and suppose y : E + F is a reduction 
to q4 : F + F by the action of an integrable system of symmeuy vector fields as in  
theorem 22. Let x ,  U ‘ ,  . . . , um-’ be coordinates on F. Then we can construct coordinates 
x , u  I * . . . ,  U ] ,  . . . , v’ for E such that 

@(x,  U, U) = x + 1 

~ ’ ( x . u ,  U) = @ ( x , u )  j = I ,  ..., m - - s  

k = m - s + I ,  . . . , U’. * k ( x  , U ,  U) = Uk-m+h- 

In particular, if q4 is completely linearized then 0 will be completely linearized. 

ProoJ We will prove the result by~induction. Let FK be one of the intermediate reductions 
f i k  : E + F k ,  as in the proof Of theorem 22. Assume F, = F. We have coordinates 
( x ,  U , . . . , I p - k  ) ( x .  U )  on F k  with respect to which 

r # ~ L ( x , u ) = f / ( x , u )  j =  1 ,  ..., m - k .  
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Let U : Fk-1 + Fk be the reduction generated by xk. The coordinate functions ( x ,  U) 
pull back by U to define m - k + 1 independent coordinates on Fk-1, which we will also 
call ( x .  U', . . . , Uk-'). To complete the local chart on Fk-l, we can choose any function U 

invariants of the action of X we must have $ E keru.. 
which is everywhere independent of those pulled back from Fr. Since x ,  U', . . . , um-$ arc 

Since keto; is one-dimensional, this implies Xk = q ( x ,  U, U)$ for some function q .  
Now from the definition of a reduction, U o &-I = & o U ,  so 

&- l (X ,  1 U, U) =(U o & - i ) j ( x , ~ ,  U) =4i(X.U) = f / ( X , U )  j 1, ...,m -k. 

The remanining component of 6 k - l  is now a onedimensional parametrized OAE 

v(x  + 1) = @;L-;+I(x, u ( x ) .  u ( x ) ) .  (2) 

Moreover, since xk generates a symmetry of it is also a symmehy of the m - k + Ith 
component. We will use this to linearize (2). 

Maeda 161 showed how to linearize a single autonomous OAE given an autonomous 
symmetry vector field. We now show that his method can be generalized to the time 
dependent, parametrized case. 

Define new coordinates (treating the u j  as parameters) 

- 
x : = x .  

It foIlows that $ = r&, so that x = $. Since x is still a symmetry of@!-?'+' in these 
coordinates, 

m-P+I so that q5k-l 

periodic, we can immediately define um-k+'(x,  U, ii) := ii - xg(u) .  Setting 

( x ,  U, ii) = (x  + I .  U, ii + g ( x ,  U)). 
If g depends only on the coordinates U"-'+', . . . , U'"-', which are necessarily unit 

d-l = fi j = l ,  .... m - k  
m-P+I I p - k + l )  = p-k+I 

fk-1 ( x , u  1 ..., 

then decrementing k to k - 1, we continue by induction (starting from k = s )  until the 
theorem is proved. 

In the general case we need to do some more work. Let x be any smooth function such 
that ~ ( x )  = 0 for all x in a neighbourhood of 0 and x ( x )  = 1 for all x in a neighbourhood 
of 1. Then with the notation [X I  denoting the largest integer less than or equal to x ,  we set 

j = l  

It can be shown that umTk+' is a smooth function of ( x ,  U, ij) and that (2) is linearized with 
respect to this coordinate. We then use induction as in the autonomous case above. 0 
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It is worth remarking here that the vector fields Xt must be evolutionary for this process 
to work: the behaviour of & under the coordinate transformations used above is very 
awkward. 

6.1. Euunple 1 

Recat1 the example of section 5.1: 
"I/(u.+.r) Ur+l = Ur 

Apart from the timelike symmetry VO = $ + ( u / x ) &  given previously, them are NI0 
further symmetries: 

X U  a 
U au 

v, = -- 
xu a a 

U au a0 
Vz=--In(u)-+x-.  

These are both evolutionary vector fields. Moreover [VI, V,) e 0, so the order in which 
they are used to reduce the system is unimportant. 

c1 : ( x , u ,  v )  I+ ( x ,  U). 

As VI is simpler, we use it first The corresponding projection p is given by 

The reduced OAE is given by $ ( x ,  U) = g o  W x ,  U ,  U), so 

Now since [VI, Vzl= 0, p*(Vz) = x& is a symmetry vector fieId of rp.  ?bus wc define a 
Mod in ate 

Using this we have &+I = iix + 1, so a further change to fix := 3, -x = U/&--x completely 
linmizes the reduced syshm: 

.. 
0X+l  = U,. 

@(x, U ,  a) (x  + 1. ufi+X)t($+r+l), 0)  
Reconstructing, 

which retains the symmetry 

Rewriting in terms of the new variable 

si x )  
li :I (0 + x )  In@) = 

we find i,+l = I?,. Thus the system is completely linearized in the coordinates fx,&, 0) .  



4942 G B Byrnes 

Solving the OAE in the original coordinates is now just a matter of expressing U and U 
in terms of li and 5. These 'first integrals' can then be replaced by arbitrary unit-periodic 
functions (provided the condition x .  U ,  U > 0 is observed): 

u ( x )  = x ( i r ( x )  + x )  

where i ( x  + 1 )  = &), ir(x + 1) = O(x). 

6.2. Example 2 

Now consider an example which leads to a more complicated reconstruction using the 
substitution (3): 

UX+I = xuz 

U,+l = U X V X .  

The corresponding mapping is 
9 ( x , u , u ) = ( x + l , x u , U L ~ )  

with derivative map in  matrix form 

1 0 0  

o u u  
The two evolutionary symmetries 

[ @ * I =  [ U x 0 1 .  

a a xz :=U- + x u -  
a XI := u- a0 au av  

can then be found and the coirimutator [XI, X,] = 0 computed. 
Since U is an invariant of XI, define the projection 

p : ( x ,  U, U) - (x. U). 

The reduced equation comes from the map 

p O ~ ( x , U . U ) = ~ ( X , U ) = ( X $  1 , x U )  

and must admit the projected vector field 
a 

p.x2 = u- 
au 

as a symmetry. Thus we define the new coordinate 

du 
P := /" - = Inu. 

J U  

In the new coordinates the reduced equation has the form 

Px+1 = t i ,  + Inx. 

Following equation (3) we now define 
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where x is a smooth step function as described above. Thus we have &+I = 2,. 
Reconstructing, the original pair of equations becomes 

UX+I  = ux 

U,,] = U @ ,  a u x  

and the second equation admits the symmetry vector field XI. Again we define 

leading to 

Using equation (3) again and re-arranging summations we obtain 

13, = ] n u ,  - x i x  - ( x ( x  - 1x1) + [x - I ] t , y ( x  - [x])ln(x -[XI) 

The term -xi, has been obtained by using the fact that ir is a unit-periodic function. 
In the coordinates (x, l i , f i )  the system is completely linearized and can be solved by 

replacing 2 and 5 with arbitrary unit-periodic functions of x .  Finding the general solution 
of the original system is then a matter of expressing U ,  U in terms of x .  l i ,  ir: 

7. Summary and concluding remarks 

As with differential equations, the presence of a sufficient number of symmetries forming 
an integrable system implies complete linearization via reduction. Such symmehies always 
exist for systems of non-singular first-order ordinary differential equations. However, 
linearization of OAES is possible if and only if the defining map @ is orientation preserving. 

In fact we have shown that if preserves orientation. then Q, is the unit-time flow of a 
vector field. Consequently it  is the unit-time flow of an equivalence class of vector fields. 

A symmetry of an OAE is therefore a simultaneous symmetry of an equivalence class 
of ODES. It is this requirement of simultaneously preserving solutions of a class of ODES 
which imposes a restriction on symmetries of OaEs: they must be projectable. 

Once the symmetries of a system of OAES are known, the process of reduction and 
reconsmction is essentially the same as for ODES: it is necessary to find the invariants of 
the symmetries by integrating a Pfaffian system. 

The determining equations for the 
symmetries of ODES are linear, first-order PDEs for the coefficients of the symmetry vector 
fields. Those for systems of OAES are linear. first-order partial diference equations. As 
with ODES, the determining equations may be more difficult to solve than the original 

Finding the symmetries is slightly different. 



4944 G B Byrnes 

problem. However, in the autonomous case Gaeta 141 has shown that the symmetries may 
be determined from a formal series expansion, similar to the Poincar6Dulac procedure [I]. 
It should be possible to extend this technique to the time dependent case: certainly this is so 
if we can first determine a time-like symmetry and reduce to an autonomous system using 
theorem 15. The convergence of such a series needs further study. 

In the cases where the symmetries can be determined from geometric arguments or 
other fortuitous circumstances, the theory presented in this paper is an important tool for 
the simplification or solution of difference equations. 
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